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Abstract. Source code comprehension (SCC) continues to be a challenge to un-

dergraduate CS students. Understanding the mental processes that students fol-

low while comprehending source code can be crucial in helping students to over-

come related challenges. Set within the Decoding the Disciplines paradigm, this 

paper reports on a study aimed at uncovering common SCC bottlenecks that sen-

ior CS students experienced. Thematic analysis of the collected data revealed 

eight common SCC difficulties specifically related to arrays, programming logic 

and control structures. The identified difficulties, together with findings from ex-

isting literature as well as the authors’ personal experiences, were then used to 

formulate six usable SCC bottlenecks. The identified bottlenecks point to student 

learning difficulties that should be addressed in introductory CS courses. This 

paper intends to create awareness among CS instructors regarding the role that a 

systematic decoding approach can play in exposing the mental processes and bot-

tlenecks unique to the CS discipline. Further investigations are needed to uncover 

the mental tasks that expert programmers follow to overcome the identified bot-

tlenecks so that students can be taught more explicit SCC strategies. 

Keywords: Undergraduate Programming, Source Code Comprehension, Stu-

dent Learning Bottlenecks, Decoding the Disciplines.  

1 Introduction  

Despite the continuous efforts of committed instructors to share the intricacies of their 

academic disciplines and their students’ desperation to succeed, many students still 

struggle to master course material [1]. The specific points where students’ learning gets 

interrupted can be referred to as bottlenecks [2, 3]. A bottleneck typically occurs when 

students are unsure about how to approach a problem and consequently follow inap-

propriate strategies [1]. In an attempt to assist instructors in addressing student learning 
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bottlenecks, Middendorf and Pace [3] devised the Decoding the Disciplines (DtDs) par-

adigm. One of the underlying principles of this paradigm is that each discipline has 

unique ways of thinking [3]. Those students who fail to master the required ways of 

thinking are unlikely to succeed in their higher-level studies. Within the DtDs para-

digm, instructors are therefore encouraged to identify discipline-specific learning bot-

tlenecks that could prevent students from mastering the basic disciplinary ways of 

thinking. Subsequently, specific strategies to address the bottlenecks are identified, im-

plemented and evaluated [1]. Despite the recent uptake in decoding research conducted 

in other disciplines [4, 5], limited information regarding DtDs research in the Computer 

Science (CS) discipline is available in the public domain. 

However, over the past three decades numerous investigations have been launched 

to gain better understanding of the various difficulties that computer programming stu-

dents experience [6, 7]. One such difficulty – which has been researched extensively – 

relates to the way in which students (also referred to as novice programmers) interpret 

pieces of source code [8, 9]. This action – commonly referred to as source code com-

prehension (SCC) – is regarded a vital skill that novice programmers have to master 

[10].  

Most of the previous SCC studies, however, focused on the evaluation of difficulties 

that students enrolled for introductory programming courses experience [11, 12]. Pace 

[1] points out that a student’s inability to master certain basic concepts may not neces-

sarily lead to his/her failure of an introductory course. However, it is likely that the 

student’s confusion will continue to pile up, causing diminishing performance of basic 

tasks. As such, it is possible for students to progress to advanced courses while they are 

still experiencing bottlenecks related to basic concepts. Their failure to grasp these 

basic concepts could potentially have a negative impact on their ability to complete 

their degrees. This paper therefore attempts to answer the following two questions:  

1. What are the major SCC difficulties experienced by senior CS students? 

2. How can knowledge of these difficulties be used to identify SCC bottlenecks 

that should ideally be addressed in introductory programming courses? 

In the remainder of this paper, a review of relevant background literature is presented 

in Section 2. This is followed by a discussion of the research design and method in 

Section 3, and a presentation and interpretation of the results in Section 4. The paper 

concludes with a presentation of the identified SCC bottlenecks in Section 5, and con-

clusions and recommendations for future research in Section 6. 

2 Background   

The first step of Middendorf and Pace's [3] seven-step DtDs framework is to identify 

student learning bottlenecks. The identification of discipline-specific bottlenecks al-

lows instructors to identify specific areas in a module where they need to seriously 

intervene in order to facilitate maximum learning [1, 13]. In identifying a learning bot-

tleneck, the instructor must ensure that the bottleneck is useful. A useful bottleneck 

affects the learning of many students; is defined clearly and without jargon; interferes 

with the major learning in a module; is relatively focused; and does not involve a large 
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number of very disparate operations [1]. Within the DtDs paradigm, instructors can use 

various ways to identify bottlenecks. 

2.1 Bottleneck Identification Approaches  

In one of the popular approaches, as suggested by Middendorf and Shopkow [13], in-

structors themselves identify bottlenecks based on specific student problems they dis-

cover during their teaching of a specific module [14]. Instructors can also identify bot-

tlenecks by focusing on a single assignment. In the History discipline, Pace [1] identi-

fied a specific difficulty while grading a writing assignment, while Shopkow [4] was 

alerted to a specific difficulty as a result of questions voiced by her students regarding 

the specifications of an assignment.  

In most of the limited number of decoding studies conducted in the CS discipline to 

date, researchers have also identified specific bottlenecks based on personal teaching 

experiences. For his Database Design and Data Retrieval module, Dan Richert [15] 

identified creating Entity Relationship diagrams, reasoning in MySQL and dualism as 

the main student learning bottlenecks. At Indiana State University, Menzel [16] used 

her vast experience in teaching an introductory CS module to identify recursion (a 

threshold concept in CS [12]) as the main bottleneck that her students experienced. For 

a follow-up module, her colleague Adrian German [17] focused his decoding study on 

addressing the challenges his students experienced with debugging. 

Bottleneck identification for a specific module can also be facilitated by an outsider 

(e.g. a pedagogical advisor). In Verpoorten et al.'s [5] study, module-specific bottle-

necks were identified by asking seven participants, representing five disciplines (Engi-

neering, Chemistry, History, Social Sciences and Electronics), to each write down a 10-

line description of two or three bottlenecks they could think of for modules they were 

teaching. In an attempt to identify the top bottlenecks experienced by Accounting stu-

dents in their Taxation modules, Timmermans and Barnett [18] first asked instructors 

to identify potential bottlenecks. Their eventual selection of the top bottlenecks was 

based on the responses of 4th year Taxation students who were asked to rate the 40 

potential bottlenecks in terms of level of understanding and importance.    

When the goal is to identify common bottlenecks within a specific discipline, the 

collective experiences of a group of instructors can also be a valuable source. In this 

regard, various researchers from the History discipline [2, 19] have used individual in-

terviews with instructors to identify common discipline-specific bottlenecks. Wilkinson 

[20] opted for a peer dialogue strategy where Law instructors collectively established 

that the reading of case law was the major learning bottleneck that their students expe-

rienced. For bottleneck identification in Political Science, Rouse et al. [21] based their 

selection of literature reviews as the major bottleneck on the experiences of both in-

structors and students (from different year levels) as well as the findings of other re-

search studies.  

It is therefore apparent that an instructor’s insight often is the main source used for 

bottleneck identification. However, the role that students can play in bottleneck identi-

fication should not be overlooked. Further justification for the seriousness of specific 
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bottlenecks can also be found by linking bottlenecks to discipline-specific learning dif-

ficulties identified in other non-decoding studies. 

2.2 SCC Difficulties   

As mentioned in Section 1, numerous previous studies have attempted to uncover the 

specific difficulties experienced by novice programmers while comprehending source 

code. Although none of these studies were specifically conducted within the DtDs 

framework, Middendorf and Shopkow [13] suggest that relevant literature can also be 

used to identify bottlenecks. 

Following an investigation of the programming competency of students enrolled for 

CS1 and CS2 courses, the 2001 McCracken group [11] concludes that many students 

still do not know how to program at the end of their introductory programming courses. 

The McCracken problem was further explored by the BRACElet project, which con-

firmed students’ lack of programming skills as a reality [22]. In an attempt to further 

understanding of the difficulties experienced by students, the McCracken group [11] 

refers to the potential role that in-depth analysis of narrative data collected from stu-

dents can play in creating deeper understanding of these difficulties. 

The ITiCSE 2004 working group study [9] was conducted as a follow-up on the 

McCracken study. They used a set of 12 Multiple Choice Questions (MCQs) to test 

students’ ability on two tasks: firstly, to predict the outcome of executing the given 

fragments of source code; and secondly, their ability to select a piece of source code 

(from a small set of options) that would correctly complete a given near-complete code 

snippet. Although many students were found to be lacking the skills required to perform 

both tasks, the latter was found to be the most challenging. The final ITiCSE 2004 

working group report concludes that students were unable to “reliably work their way 

through the long chain of reasoning required to hand execute code, and/or … to reason 

reliably at a more abstract level to select the missing line of code” [9] (p.132). 

The questions that the ITiCSE 2004 working group [9] used focused heavily on the 

concept of arrays – with arrays featuring in all 12 questions. In a study aimed at im-

proving students’ learning experiences, Hyland and Clynch [23] found arrays to be the 

most challenging topic for first and second year students. In an attempt to record all the 

difficulties that students experience during practical computer programming sessions, 

Garner, Haden and Robins [24] found arrays to be featuring among the top three diffi-

culties experienced by students. Other studies [25, 26] have also identified arrays as a 

challenging concept for novice programmers.  

All the ITiCSE 2004 questions [9] included some form of basic control structures 

such as conditionals (e.g. if, if-else), loops (e.g. while, for) or a combination 

of both. According to Milne and Rowe [27], many novice programmers struggle to 

comprehend basic control structures. Various studies have reported on the specific dif-

ficulties that students experienced while interpreting looping (repetition) structures [23, 

26, 28, 29]. Garner et al. [24] mention that most of the difficulties associated with loops 

originate in students’ incorrect comprehension of either the header or body of the loop-

ing structure.  
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Although logic generally is regarded as a Mathematical field, it has grown more rele-

vant to CS especially with regard to its applications [30]. Programming logic involves 

executing statements contained in a given piece of code one after another in the order 

in which they are written. Though still logical and correct, there are some programming 

control structures that may violate this execution order [31]. It is therefore not surpris-

ing that students struggle with logical reasoning in solving computer programming re-

lated problems [28]. The logical flow of the source code statements is closely related 

to the control flow of such statements [24]. This implies that for a programmer to fully 

comprehend a computer program, he/she must skilfully combine the programming 

logic with the control flow of the program. Students are more likely to logically work 

(or trace) through a piece of source code if they have adequate knowledge of the se-

mantics of the programming language and have the ability to keep track of changes 

made to variable values [9]. It is therefore especially novices who struggle to follow a 

program’s execution [7, 32] and control flow [24]. 

As the proponents of the DtDs paradigm argue that bottlenecks directly relate to 

difficulties hindering the learning of many students [3], these previously identified dif-

ficulties can serve as a baseline for the identification of common and useful SCC bot-

tlenecks. The exact nature of some of these difficulties, however, remains fuzzy: Where 

exactly are students getting stuck? Why are they getting stuck? What are they doing 

wrong? Which strategies do they resort to when they get stuck? More in-depth 

knowledge regarding the nature of these difficulties can be invaluable in determining 

teaching and learning gaps related to SCC. 

3 Research Methods   

3.1 Design   

Within the realms of a DtDs-based research design, the study described in this paper 

followed an approach based on Plowright's [33] Frameworks for an Integrated Meth-

odology (FraIM). Within this framework, the focus was on collecting narrative and/or 

numeric data by means of observations, asking questions and/or artefact analysis. The 

study population consisted of final year undergraduate CS students from a selected 

South African university (referred to as ‘senior students’ in this paper). The empirical 

part of the study comprised two phases. The aim of Phase 1 was to identify specific 

senior CS students having trouble in comprehending short pieces of source code. In 

Phase 2, we wanted to uncover specific points or places [3] where these students were 

experiencing SCC difficulties with the goal of identifying common and useful SCC 

bottlenecks. 

3.2 Phase 1 Participants, Data Collection and Analysis   

The sample for Phase 1 consisted of the 40 students registered for the 3rd year Internet 

Programming module. The selection of this sample can be described as both purposeful 

and convenient [34]. The sample was purposeful because the students had already com-

pleted four programming modules. However, they could still be regarded as novice 
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programmers since they did not have any professional programming experience. The 

sample was also convenient since we had easy access to the participants as the lecturer 

responsible for the module agreed to make available one of her scheduled class sessions 

for this research activity. 

For the research activity of Phase 1, participants were given a test consisting of the 

12 MCQs developed by the ITiCSE 2004 working group [9]. For each of the questions, 

participants had to work through a short fragment of source code and then either predict 

the execution outcome of the code fragment or select (from a small set of options) the 

relevant piece of code needed to complete the given fragment. These 12 MCQs were 

chosen for two reasons. Firstly, all the questions contained source code fragments that 

students had to comprehend before they could answer the related question. Secondly, 

the questions had been tested with a large population of students from several univer-

sities in the United States of America and in other countries. Since the original ques-

tions were written in Java, we had to convert the code fragments to C# (a programming 

language familiar to the chosen population).  

The participants’ answer sheets (regarded as “artefacts”) were the primary source of 

data for Phase 1. After grading of the artefacts, the performance data for each partici-

pant were then captured into a Microsoft Excel spreadsheet and descriptive statistics 

were used to rank the questions in order of difficulty (based on the number of partici-

pants who incorrectly answered the question). The three most difficult questions (Q3, 

Q6 and Q8) were chosen for use in Phase 2.   

3.3 Phase 2 Data Collection    

Based on the student performance data collected during Phase 1, a total of 15 partici-

pants were invited to take part in Phase 2. These were the participants who provided 

incorrect answers to all three of the most difficult questions identified in Phase 1. Ten 

of the 15 invited participants agreed to partake in Phase 2. The research activity in Phase 

2 consisted of individual sessions during which each participant had to verbally explain 

his/her thinking process(es) (through a think-aloud technique [35]) while answering the 

three most difficult SCC questions identified in Phase 1. This data collection strategy 

can be regarded as a means of “asking questions”. 

Time slots of 45 minutes were scheduled for each of the individual sessions. How-

ever, participants were informed that they could take as much time as they needed to 

complete the task. Since none of the participants had prior experience with the required 

think-aloud technique, this technique was demonstrated to each participant, using an 

unrelated SCC question. The first author (principal researcher) played the role of the 

interviewer by asking probing questions when required (i.e. no progress or silence). 

Where deemed necessary, he also recorded some observations as an additional data 

collection strategy. The proceedings of each session were audio recorded with permis-

sion from the relevant participant. 
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3.4 Phase 2 Data Analysis    

To transcribe and analyse the audio recordings made during the individual think-aloud 

sessions, we used an adapted version of Haregu's [36] Narrative Data Analysis Frame-

work. Upon data transcription, the principal researcher cleansed the data by searching 

for faults and repairing them [37]. Since the participants had to verbalise their thoughts 

as part of the think-aloud process, the transcripts contained numerous illogical and re-

peated statements. He therefore decided to make use of fuzzy validation instead of strict 

validation (which requires the complete removal of invalid or undesired responses) 

[37]. With fuzzy validation, the researcher is allowed to correct some data if there is a 

close match or known answer. After this, the principal researcher familiarised himself 

with the data [38] by listening and re-listening to the audio records numerous times as 

well as intensively and repeatedly reading the transcripts. This helped him to decide on 

a coding plan where the analysis would be guided by the data as it relates to the first 

research question. At this stage, the 10 validated transcripts were imported into Nvivo 

12 Professional for Microsoft Windows, after which codes were developed (by creating 

several nodes) for each SCC difficulty identified in the data.  

In coding, Klenke [39] recommends the use of a unit of analysis. These can be words, 

sentences or paragraphs. As such, the principal researcher coded the data by highlight-

ing and/or underlining text (from which the SCC difficulties could be extracted) within 

the realms of the stated units of analysis. He then populated the created codes by mov-

ing the necessary text into them. During this process, the names of the codes were con-

tinuously revised. Relevant themes and recurrent themes then started emerging. For 

each theme developed, the Nvivo-generated frequencies of occurrence were used.    

4 Results and Interpretation    

Given the large amount of data collected during Phase 2, the results discussion only 

focuses on the participants’ comprehension of Question 3 (see Fig. 1). (Note: The code 

line numbers were added in aid of this discussion). This question was selected since the 

related think-aloud activity data revealed numerous difficulties that can be directly as-

sociated with SCC. This question also tested students’ comprehension of arrays and 

basic control structures – concepts that both have previously been identified as chal-

lenging for novice programmers (see Section 2.2). The discussion of the eight most 

common SCC difficulties identified is grouped into three categories: arrays, program-

ming logic and control structures. 

4.1 Array Related Difficulties     

Analysis of the Question 3 think-aloud data revealed four major array related difficul-

ties experienced by the participants.  

Array index. An array index refers to a key or value that identifies the position of an 

element or object stored in an array. Four of the participants had difficulties to interpret 
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simple array indexes with a total of nine occurrences identified. Participant 1 (P1) had 

the most difficulties in this regard with three occurrences identified. In her interpreta-

tion of b[i], she regarded i as a value contained in array b instead of recognising it 

as the position of the element in the array. One of the other participants (P8) confused 

the square brackets indicating the array index with a multiplication operator when he 

interpreted b[i] as b multiplied by i: “int i is equal to 0 [Line 8], and then for this 

times that, it is equal to true [Line 10] then increment the counter [Line 11], that 

times that is equal to true … it is a difficult one but then ... that times that is true 

and that times that is true”. From the given examples, it can be deduced that both 

participants were challenged by the notation [40] of the array index. 

 

 

Fig. 1. Question 3 from the set of 12 MCQs.    

Length of an array. The length of an array refers to the maximum number of values 

that can be stored in a given array. Three of the participants struggled to determine the 

length of the arrays contained in Question 3. P1 had no idea how to determine the length 

of the Boolean array b and remarked: “I do not know what is [the] length of [array] 

b”. Similarly, P6 was unable to determine the correct length of the array. He interpreted 

the Boolean array b to have the length of 4 while the correct length was 5: “So now is 

0 less than 4 because our b value is 4” [while reading the condition of the for loop in 

Line 3].  
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Boolean array. A Boolean array refers to an array where the elements can only contain 

true or false values. Five occurrences of Boolean array difficulties were identified, 

with P7 being the most challenged (with three identified occurrences). Overall, the 

identified difficulties ranged from declaration of the Boolean array to basic understand-

ing regarding the effects of operations performed on such arrays. 

P7 got stuck at the Boolean array declaration in Line 2 and opted to skip the question: 

“Do I understand what I am doing? … it is a Boolean array, array is a Boolean, what 

does [it mean]? … [pause] … I am not sure about this one yet, let me ... (turning the 

page to see the next question)”. When P7 later returned to this question, his confusion 

regarding Boolean arrays became even more apparent as he regarded the index value 

of 1 as the Boolean equivalent of true: “Once it gets to the if statement, i is now 

equal to 1 and 1 is equal to true” [Line 10]. 

Similarly, P9 was under the impression that since b was a Boolean array it could 

only contain two values: “In position 0, I have 1 which means now at b[1] I have 

true. In my bool array I have stored 2 values” [Line 10]. In their comprehension of 

Line 10, both P7 and P9 disregarded the actual code syntax. Instead, they reverted back 

to their basic knowledge about Boolean variables where a 0 represents false and a 1 

represents true. Both participants regarded the index positions of 0 and 1 to represent 

the Boolean equivalents.  

Decomposition. Decomposition – where a complicated piece of code is broken down 

into its constituent components in order to simplify the interpretation thereof [41] – is 

a task that many novice programmers struggle with [42]. In their comprehension of 

Question 3, seven of the participants found it particularly difficult to decompose the 

compound index contained in the expression b[x[i]] (see Line 6 in Fig. 1). Overall, 

29 occurrences of this difficulty were identified from the Question 3 transcripts.  

P10 misinterpreted Line 6 to be resetting all the values contained in the b array to 

true, while in actual fact only the selected values in array b would be reset to true: 

“b[x[i]]set to true [Line 6] ... yeah no, I am very, very confused actually (longer 

pause) ... b[i] ... then the second for loop [Line 5] sets everything from the integer 

array to true,  so if I am correct, then it resets everything from the first for loop 

[Line 3] back to true”. 

Meanwhile, P6 became so confused with the meaning of the compound index ex-

pression, that he could not even see how the code in Line 6 was related to the for loop 

in Line 5: “Now I am worried about this for loop, the second for loop [Line 5], it 

seems like it has nothing to do with the rest of the statements that come after it … so 

this second for loop is the one that is freaking me out”. Although P6 had no difficulty 

to comprehend any of the other for loops in Question 3, it seems that his inability to 

decompose the compound index expression caused so much confusion that he suddenly 

could not comprehend the basic execution of the for loop in Line 5. 
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4.2 Programming Logic Difficulties      

The discussion in this sub-section focuses on the three programming logic difficulties 

identified from the Question 3 think-aloud transcripts.  

The ripple effect. This effect occurs when the misinterpretation of one statement has a 

direct impact on the execution of statements that follow it. This difficulty, which was 

observed with three participants, typically arises when programmers misinterpret pro-

gramming logic [40]. Due to P1’s struggle to interpret the array indexes (see Section 

4.1), her interpretation of the statements contained in the third for loop completely 

ignored any changes made to the elements of the b array in the first two for loops 

[Lines 3-6]. She remarked: “If b[i] is true [Line 10], I increment count [Line 11]. 

So if I increment count every time until it is over 5, then I will have 5”. She therefore 

chose “5” (Option E) as her final answer to Question 3, which was incorrect.  

The difficulties that P6 had in interpreting the second for loop [Lines 5-6] (see 

Section 4.1 – Decomposition) caused him to overlook that loop completely while he 

was interpreting the third for loop: “When looking at this third for loop [Line 8], it 

is the same as the first one [Line 3] that says the bool array is always equal to false. 

Now in [the third one] they are saying if the element at position i in the Boolean array 

is equal to true [Line 10], then increment count [Line 11]. But according to this 

[Line 4], that b value is always false”. 

The behaviour displayed by both P1 and P6 indicated that they were not thinking 

sequentially [43] and therefore failed to follow the logic of the source code in question 

[44]. P9 showed similar behaviour after she realised that she could not interpret any of 

the for loops and the containing statements. In response, she reverted her attention to 

those statements that she could comprehend and only considered those to arrive at 

count = 1 as her answer to Question 3. Her non-sequential reasoning is evident from 

the following excerpt: “My first index, I have a false [Line 4] and then my second, I 

have a true [Line 6] and then int count is equal to 0 [Line 7] … it will only incre-

ment when I get to this point [Line 11] whereby count needs to be 1 [Option A]”. 

The most concerning aspect of the thinking patterns portrayed by these three partic-

ipants is the “mental block” caused by the statements they could not fully comprehend 

and their consequent anxious behaviour (as observed by the interviewer). These partic-

ipants tried to resolve the mental block by completely ignoring the troublesome state-

ments as if those were no longer part of the code. 

Guessing. One of the common critiques of MCQs is that they are answerable through 

guessing. This is also true of the 12 MCQs used in Part 1 of this study as guessing 

behaviour was observed by both Fitzgerald, Simon and Thomas [45] and Lister et al. 

[9], who used the same questions in their studies. The format of the Phase 2 think-aloud 

sessions discouraged guessing as participants were continuously prompted to explain 

their reasoning in as much detail as possible. However, one participant (P8) did attempt 

guessing when he said “I just have to go with A” after only tracing through a small 
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section of the code. At that stage, he was unable to show how he arrived at the chosen 

answer and had to be prompted by the interviewer to re-explain his reasoning. 

 Mathematical expressions. When a line of code contains a mathematical expression, 

the misinterpretation of an operator can interfere with the comprehension logic. One 

example of such a mistake was observed when P7 failed to terminate execution of the 

third for loop (Line 8) when the value of i increased to 5: “Yes, i becomes 5 … once 

it runs throughout the loop and becomes 5 then ... b[i] is going to be true ... then the 

count also increments”. He therefore treated the < as if it was a <= operator, which 

is typically regarded as a logical error in comprehension of source code. 

4.3 Programming Control Structure Difficulty     

The Question 3 code only contained one type of control structure in the form of three 

for repetition structures. As mentioned in the ripple effect discussion (see Section 4.2), 

the lack of understanding that P6 and P9 portrayed regarding the overall functioning of 

a for loop caused them to eventually ignore the lines of code that contained these 

structures. Another for loop misconception was observed when P7 repeatedly exe-

cuted the loop counter increment statement (++i) at the beginning of each loop, thereby 

setting the initial value of i to 1 for each of the three loops. Since repetition structures 

are one of the concepts that novices find challenging [29], it is not surprising that some 

participants experienced difficulties in this regard. However, one area of concern is the 

level of difficulty that these senior students experienced in comprehending basic for 

repetition structures.  

5 Identification of SCC Bottlenecks    

The results of Phase 2 revealed that the participants in this study (senior CS students) 

experienced eight major SCC difficulties related to the concept of arrays, programming 

logic and programming control. In following existing bottleneck identification guide-

lines [1, 13], we used our collective experience of more than 25 years in teaching intro-

ductory and advanced programming modules combined with the new knowledge 

gained regarding difficulties experienced by our students, as well as relevant literature, 

to formulate six usable SCC bottlenecks. 

Bottleneck 1: Students are unable to keep track of variable values while tracing 

through a piece of code. Throughout the think-aloud excerpts presented in Section 4, 

there are numerous examples where students lost track of the changes made to variable 

values, causing them to arrive at an incorrect answer. They all tried to remember the 

changes to the variable values (instead of making notes on the provided piece of paper), 

which put unnecessary strain on their working memories. Their incorrect answers were 

therefore a direct result of failing memory or guessing. Lister et al. [9] point out that 

when students document changes to variable values they are much more likely to arrive 
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at the correct answer. Most of the students in our study did not follow a reliable strategy 

to keep track of such value changes.  

Bottleneck 2: Students are unable to comprehend statements containing arrays 

and perform basic operations on array elements. The bulk of the identified difficul-

ties can be related to the students’ incorrect understanding of array concepts, thereby 

supporting findings from previous studies in which arrays were also identified as one 

of the most challenging concepts for novice programmers [23-26]. Our students partic-

ularly struggled to interpret the array indexes – especially when it was integrated with 

other concepts. While one student confused the square brackets (indicating the array 

index) with a multiplication operator, others were unable to determine the length of an 

array. Although most students had little trouble to comprehend the array containing 

integer (numeric) values, many of them were completely lost when having to deal with 

the Boolean array.  

Bottleneck 3: Students are unable to comprehend the execution of basic for rep-

etition structures. Most of the difficulties observed with the for loops can be traced 

back to our students’ incorrect comprehension of either the header or the body of the 

looping structure, as Garner et al. [24] also observed. While some students failed to 

recognise when and how to terminate the loops [29], an instance was also observed 

where the loop counter increment statement was executed at the wrong time. Although 

most of the difficulties observed in comprehension of the body of the looping structure 

are more specifically related to arrays, referencing the incorrect value of the loop coun-

ter variable also caused problems for some students. Most worrying were the two stu-

dents who completely gave up on interpreting the for loops and opted to ignore either 

the entire structure or the loop header completely for the remainder of their Question 3 

interpretation.  

Bottleneck 4: Students do not possess adequate strategies to help them interpret 

lines of code they cannot comprehend. This bottleneck was observed in cases where 

students were unable to read, interpret and understand (execute) a specific code state-

ment. Of particular interest here are cases where two or more separate concepts – which 

a student had no trouble to comprehend earlier – were combined to form a single “com-

plex” concept. The students were unable to decompose [41] the more complex piece of 

code into smaller parts in order to simplify the interpretation thereof. Their most com-

mon response to this challenge was to ignore the complex statements or lines of code 

completely. Although decomposition is a task that many novice programmers struggle 

with [42], students may never learn how to deal with complex concepts if they are not 

taught explicit strategies to resort to in such situations.  

Bottleneck 5: Students view a piece of source code as consisting of separate lines 

of code, thereby ignoring the significance of each individual line. We typically teach 

our students that, in order to fully comprehend what a program does, they first need to 
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understand the meaning of each distinct line of code making up that program. However, 

it seems that in following our “guidelines”, some students not only lose sight of how 

the parts fit together but also of the overall significance of each individual line of code 

or statement. This behaviour was evident for those students who chose to completely 

ignore sections of code they could not comprehend with a complete disregard for the 

impact this would have on their ability to determine the correct answer to the question. 

Somewhat similar behaviour is evident in Shopkow et al.’s [19] description of their 

“ignoring significance” bottleneck – referring to History students’ complete disregard 

for how individual facts relate to the story they are trying to tell.  

Bottleneck 6: Students are unable to reliably work their way through the long 

chain of reasoning required to comprehend a piece of source code. This final bot-

tleneck can be regarded as overarching since it refers to one of the most common and 

significant SCC difficulties originally identified by Lister et al. [9], and which we also 

observed in our study. It is directly related to our “ripple effect” difficulty that refers to 

mistakes made when students are unable to think sequentially [43] or fail to follow the 

source code logic [44]. In this study, we first-hand experienced the significant negative 

impact that inadequate knowledge of semantics and inability to keep track of variable 

values can have on a student’s comprehension of a piece of code. These are all examples 

of actions that can cause a mental block in students’ reasoning ability, which they are 

unlikely to overcome if they do not possess the required knowledge and abilities to deal 

with such difficulties. 

Although we present these as six separate bottlenecks, they should be seen as inter-

connected with each other [19] since they are all indicators of mental challenges expe-

rienced by novice programmers while comprehending source code. 

6 Conclusions and Future Work    

SCC continues to be a challenge to undergraduate CS students. Understanding the men-

tal processes that students follow while comprehending source code can be crucial in 

helping students to overcome related challenges. By focusing on Step 1 of the seven-

step DtDs framework, this study aimed to uncover the major SCC bottlenecks experi-

enced by senior CS students. Thematic analysis of data collected by means of asking 

questions, observations and artefact analysis revealed a series of SCC difficulties spe-

cifically related to arrays, programming logic and control structures. The uncovered 

difficulties, combined with findings from existing literature and the personal experi-

ences of the authors, were then used to formulate six bottlenecks that are indicative of 

the typical mental challenges experienced by novice programmers during the compre-

hension of source code. By choosing to focus on senior students, we were able to iden-

tify major bottlenecks that point to student learning difficulties that are currently not 

adequately addressed in introductory programming courses, and therefore still influ-

ence the mental processes followed by final-year undergraduate students.  

Through this paper, we also wanted to create awareness among instructors regarding 

the role that a systematic decoding approach can play in exposing the mental processes 
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and bottlenecks unique to the CS discipline. In order to address the remaining six steps 

of the DtDs framework [3], future research is firstly needed to uncover the mental tasks 

followed by expert programmers to overcome the six identified SCC bottlenecks. This 

knowledge can then be used to devise teaching and learning strategies that model the 

explicit mental strategies that experts follow. After creating opportunities for students 

to practice these skills and receive feedback on their efforts, instructors can assess stu-

dents’ efforts to determine whether they have benefited from the implemented strate-

gies or not. The ultimate goal of this suggested research protocol is to help students 

master the mental actions they need to be successful in the CS discipline.  
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